Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Med Internet Res ; 24(4): e36830, 2022 04 26.
Article in English | MEDLINE | ID: covidwho-1775590

ABSTRACT

BACKGROUND: Vaccination is an important intervention to prevent the incidence and spread of serious diseases. Many factors including information obtained from the internet influence individuals' decisions to vaccinate. Misinformation is a critical issue and can be hard to detect, although it can change people's minds, opinions, and decisions. The impact of misinformation on public health and vaccination hesitancy is well documented, but little research has been conducted on the relationship between the size of the population reached by misinformation and the vaccination decisions made by that population. A number of fact-checking services are available on the web, including the Islander news analysis system, a free web service that provides individuals with real-time judgment on web news. In this study, we used such services to estimate the amount of fake news available and used Google Trends levels to model the spread of fake news. We quantified this relationship using official public data on COVID-19 vaccination in Taiwan. OBJECTIVE: In this study, we aimed to quantify the impact of the magnitude of the propagation of fake news on vaccination decisions. METHODS: We collected public data about COVID-19 infections and vaccination from Taiwan's official website and estimated the popularity of searches using Google Trends. We indirectly collected news from 26 digital media sources, using the news database of the Islander system. This system crawls the internet in real time, analyzes the news, and stores it. The incitement and suspicion scores of the Islander system were used to objectively judge news, and a fake news percentage variable was produced. We used multivariable linear regression, chi-square tests, and the Johnson-Neyman procedure to analyze this relationship, using weekly data. RESULTS: A total of 791,183 news items were obtained over 43 weeks in 2021. There was a significant increase in the proportion of fake news in 11 of the 26 media sources during the public vaccination stage. The regression model revealed a positive adjusted coefficient (ß=0.98, P=.002) of vaccine availability on the following week's vaccination doses, and a negative adjusted coefficient (ß=-3.21, P=.04) of the interaction term on the fake news percentage with the Google Trends level. The Johnson-Neiman plot of the adjusted effect for the interaction term showed that the Google Trends level had a significant negative adjustment effect on vaccination doses for the following week when the proportion of fake news exceeded 39.3%. CONCLUSIONS: There was a significant relationship between the amount of fake news to which the population was exposed and the number of vaccination doses administered. Reducing the amount of fake news and increasing public immunity to misinformation will be critical to maintain public health in the internet age.


Subject(s)
COVID-19 , Social Media , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Disinformation , Humans , Internet , Prevalence , Retrospective Studies , Taiwan/epidemiology , Vaccination
2.
Nucleic Acids Res ; 49(D1): D1152-D1159, 2021 01 08.
Article in English | MEDLINE | ID: covidwho-1117392

ABSTRACT

The current state of the COVID-19 pandemic is a global health crisis. To fight the novel coronavirus, one of the best-known ways is to block enzymes essential for virus replication. Currently, we know that the SARS-CoV-2 virus encodes about 29 proteins such as spike protein, 3C-like protease (3CLpro), RNA-dependent RNA polymerase (RdRp), Papain-like protease (PLpro), and nucleocapsid (N) protein. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) for viral entry and transmembrane serine protease family member II (TMPRSS2) for spike protein priming. Thus in order to speed up the discovery of potential drugs, we develop DockCoV2, a drug database for SARS-CoV-2. DockCoV2 focuses on predicting the binding affinity of FDA-approved and Taiwan National Health Insurance (NHI) drugs with the seven proteins mentioned above. This database contains a total of 3,109 drugs. DockCoV2 is easy to use and search against, is well cross-linked to external databases, and provides the state-of-the-art prediction results in one site. Users can download their drug-protein docking data of interest and examine additional drug-related information on DockCoV2. Furthermore, DockCoV2 provides experimental information to help users understand which drugs have already been reported to be effective against MERS or SARS-CoV. DockCoV2 is available at https://covirus.cc/drugs/.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Databases, Pharmaceutical/statistics & numerical data , SARS-CoV-2/drug effects , Antiviral Agents/metabolism , COVID-19/epidemiology , COVID-19/virology , Data Curation/methods , Data Mining/methods , Humans , Internet , Models, Molecular , Pandemics , Protein Binding/drug effects , Protein Domains , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL